博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
openjudge(三)
阅读量:4837 次
发布时间:2019-06-11

本文共 1287 字,大约阅读时间需要 4 分钟。

已知三角形的三边分别是a、b、c,

先算出周长的一半s=1/2(a+b+c)
则该三角形面积S=根号[s(s-a)(s-b)(s-c)]
这个公式叫海伦——秦九昭公式
证明:
设三角形的三边a、b、c的对角分别为A、B、C,
则根据余弦定理c²=a²+b²-2ab·cosC,得
cosC = (a²+b²-c²)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos²C)
=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]
=1/4*√[4a²b²-(a²+b²-c²)²]
=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]
=1/4*√{[(a+b)²-c²][c²-(a-b)²]}
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设s=(a+b+c)/2
则s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[s(s-a)(s-b)(s-c)]
所以,三角形ABC面积S=√[s(s-a)(s-b)(s-c)]

 

#include <iostream>

#include<math.h>
#include<iomanip>
using namespace std;
float square(float x1,float y1,float x2,float y2,float x3,float y3)
{
    float a,b,c,s,ss;
    a=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    b=sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3));
    c=sqrt((x3-x2)*(x3-x2)+(y3-y2)*(y3-y2));
    s=(a+b+c)/2;
    ss=sqrt(s*(s-a)*(s-b)*(s-c));
    return ss;
}
int main()
{
 float a,b,c,d,e,f,ss;
 cin>>a>>b>>c>>d>>e>>f;
 ss=square(a,b,c,d,e,f);
 cout<<fixed<<setprecision(2)<<ss<<endl;
    return 0;
}

 

 

在c++中求2^6可以用#include<cmath>库文件,中的pow函数。函数原型是double pow(double base,double exp)。

#include <iostream>

#include<math.h>
#include<iomanip>
using namespace std;
int main()
{
int n;
cin>>n;
int result=pow(2,n);
cout<<result<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/soberzml/p/7919452.html

你可能感兴趣的文章
易信界面布局学习
查看>>
【Java并发】线程的顺序执行
查看>>
POJ1988 并查集的使用
查看>>
trie树--详解
查看>>
canvas 使用 图片 切片的时候 在chrome 下 要注意的 一点
查看>>
[Apple开发者帐户帮助]六、配置应用服务(4)创建MusicKit标识符和私钥
查看>>
[Swift]LeetCode761. 特殊的二进制序列 | Special Binary String
查看>>
[Xcode 实际操作]三、视图控制器-(11)在Storyboard中使用表格控件
查看>>
IDEA 安装 以及 搭建 maven
查看>>
20155330 《网络对抗》 Exp5 MSF基础应用
查看>>
PHP正则:
查看>>
[Angular 2] Using ng-model for two-way binding
查看>>
使用karma和jasmine进行angularjs单元测试
查看>>
在Application中集成Microsoft Translator服务之开发前准备
查看>>
为什么一些机器学习模型需要对数据进行归一化?
查看>>
ie6/7/8 FireFox Google 浏览器问题参考
查看>>
Intermediate Debugging with Xcode 4.5
查看>>
linux下mysql安装
查看>>
(转载)彻底的理解:WebService到底是什么?
查看>>
最小圆覆盖(随机增量||模拟退火)
查看>>